Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.743
Filtrar
1.
Microb Pathog ; 190: 106608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503396

RESUMO

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cumarínicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo
2.
Microb Pathog ; 190: 106627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521473

RESUMO

Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.


Assuntos
Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Imidazóis , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Imidazóis/farmacologia , Imidazóis/química , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ligantes , Tetraciclina/farmacologia , Naftalenos/farmacologia , Naftalenos/química , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Eritromicina/farmacologia , Etídio/metabolismo , Sinergismo Farmacológico
3.
J Mol Model ; 29(8): 258, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468720

RESUMO

CONTEXT: Staphylococcus aureus is a highly pathogenic organism that is the most common cause of postoperative complications as well as severe infections like bacteremia and infective endocarditis. By mediating the formation of biofilms and the expression of virulent genes, the quorum sensing (QS) mechanism is a major contributor to the development of these diseases. By hindering its QS network, an innovative approach to avoiding this bacterial infection is taken. Targeting the AgrA of the Agr system serves as beneficial in holding the top position in the QS system cascade. METHODS: Using known AgrA inhibitors, the machine learning algorithms (artificial neural network, naïve Bayes, random forest, and support vector machine) and pharmacophore model were developed. The potential lead compounds were screened against the Zinc and COCONUT databases using the best pharmacophore hypothesis. The hits were then subjected second screening process using the best machine learning model. The predicted active compounds were then reranked based on the docking score. The stability of AgrA-lead compounds was studied using molecular dynamics approaches, and an ADME profile was also carried out. Five lead compounds, namely, CNP02386963,4,5-trihydroxy-2-[({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)methyl]benzoic acid, CNP0129274 4-(dimethylamino)-1,5,6,10,12,12a-hexahydroxy-6-methyl-3,11-dioxo-3,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide, CNP0242717 3-Hydroxyasebotin, CNP0361624 3,4,5-trihydroxy-6-[(2,4,5,6,7-pentahydroxy-1-oxooctan-3-yl)oxy]oxane-2-carboxylic acid, and CNP0285058 2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-(4-hydroxyphenyl)acetonitrile were obtained using the two-step virtual screening process. The molecular dynamics study revealed that the CNP0238696 was found to be stable in the binding pocket of AgrA. ADME profiles show that this compound has two Lipinski violations and low bioavailability. Further studies should be performed to assess the anti-biofilm activity of the lead compound in vitro.


Assuntos
Antibacterianos , Proteínas de Bactérias , Aprendizado de Máquina , Percepção de Quorum , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Farmacóforo , Antibacterianos/química , Simulação de Dinâmica Molecular , Descoberta de Drogas
4.
Biochemistry ; 62(3): 710-721, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36657084

RESUMO

Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.


Assuntos
Acetiltransferases , Mycobacterium tuberculosis , Tuberculose , Humanos , Acetiltransferases/antagonistas & inibidores , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Canamicina/farmacologia , Canamicina/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Proguanil/metabolismo , Tuberculose/tratamento farmacológico
5.
FEBS J ; 290(6): 1563-1582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36197115

RESUMO

A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.


Assuntos
Antituberculosos , Proteínas de Bactérias , Hidrolases , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Compostos Organofosforados , Humanos , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Compostos Organofosforados/química , Cristalografia por Raios X , Hidrolases/antagonistas & inibidores , Hidrolases/química , Simulação por Computador
6.
ACS Infect Dis ; 8(12): 2579-2585, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36399035

RESUMO

Staphylococcus aureus, a key ESKAPE bacteria, is responsible for most blood-based infections and, as a result, is a major economic healthcare burden requiring urgent attention. Here, we report in silico docking, synthesis, and assay of N1-diphenylmethyl triazole-based analogues (7-13) designed to interact with the entire binding site of S. aureus biotin protein ligase (SaBPL), an enzyme critical for the regulation of gluconeogenesis and fatty acid biosynthesis. The second aryl ring of these compounds enhances both SaBPL potency and whole cell activity against S. aureus relative to previously reported mono-benzyl triazoles. Analogues 12 and 13, with added substituents to better interact with the adenine binding site, are particularly potent, with Ki values of 6.01 ± 1.01 and 8.43 ± 0.73 nM, respectively. These analogues are the most active triazole-based inhibitors reported to date and, importantly, inhibit the growth of a clinical isolate strain of S. aureus ATCC 49775, with minimum inhibitory concentrations of 1 and 8 µg/mL, respectively.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbono-Nitrogênio Liases , Staphylococcus aureus , Triazóis , Biotina , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Triazóis/química , Triazóis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Carbono-Nitrogênio Liases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores
7.
ACS Infect Dis ; 8(12): 2430-2440, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417754

RESUMO

Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 µM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 µM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 µM.


Assuntos
Proteínas de Bactérias , Metiltransferases , Mycobacterium tuberculosis , Vitamina K 2 , Humanos , Escherichia coli/genética , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Vitamina K 2/metabolismo
8.
Pak J Pharm Sci ; 35(4(Special)): 1241-1250, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36218103

RESUMO

The bacterial HslVU complex consists of two different proteins, i.e., the HslV protease and the HslU ATPase. The functional HslVU enzyme complex forms only when the HslU c-terminal helix is inserted into the cavity located between two adjacent HslV monomers in order to allosterically activate the HslV protease. Based on its essential role in maintaining microbial proteostasis as well its absence from human beings, it is considered a promising therapeutic target for designing antibacterial agents. The goal of the present study was to find out potential drug candidates that could over-activate the HslV protease and produce aberrant proteolysis in pathogenic bacteria. Derivatives of 3-substituted coumarin have been identified as potential HslV protease activators based on their highest docking scores, ideal interaction patterns, and significant in-vitro HslV activation potential. Their ED50 values were in the sub-micromolar range, i.e., 0.4-0.48µM. The conformational stability of the contacts between the HslV dimer and the active compounds was further confirmed by molecular dynamics studies. Correspondingly, the ADMET characteristics of these lead molecules considerably demonstrated their significant non-toxic drug-like abilities. This research not only identified small non-peptidic HslV protease activators but also improved the understanding of the mode of action of 3-substituted coumarin derivatives as antibacterials.


Assuntos
Proteínas de Bactérias , Cumarínicos , Endopeptidases , Peptídeo Hidrolases , Inibidores de Proteases , Adenosina Trifosfatases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Cumarínicos/farmacologia , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia
9.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
10.
Proc Natl Acad Sci U S A ; 119(30): e2113963119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858440

RESUMO

Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Corynebacterium , Transporte de Íons , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/química , Ácidos Micólicos/metabolismo , Prótons , Especificidade por Substrato
11.
J Comput Aided Mol Des ; 36(7): 507-520, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35809194

RESUMO

Enterococcus faecalis, a gram-positive bacterium, is among the most common nosocomial pathogens due to its limited susceptibility to antibiotics and its reservoir of the genes coding for virulence factors. Bacterial enzymes such as kinases and phosphorylases play important roles in diverse functions of a bacterial cell and, thus, are potential antibacterial drug targets. In Gram-positive bacteria, HPr Kinase/Phosphorylase (HPrK/P), a bifunctional enzyme is involved in the regulation of carbon catabolite repression by phosphorylating/dephosphorylating the histidine-containing phosphocarrier protein (HPr) at Ser46 residue. Deficiencies in HPrK/P function leads to severe defects in bacterial growth. This study aimed at identifying novel inhibitors of E. faecalis HPrK/P from a commercial compound library using structure-based virtual screening. The hit molecules were purchased and their effect on enzyme activity and growth of resistant E. faecalis was evaluated in vitro. Furthermore, docking and molecular dynamics simulations were performed to study the interactions of the hit compounds with HPrK/P. Among the identified hit molecules, two compounds inhibited the phosphorylation of HPr as well as significantly reduced the growth of resistant E. faecalis in vitro. These identified potential HPrK/P inhibitors open new research avenues towards the development of novel antimicrobials against resistant Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Proteínas de Bactérias , Enterococcus faecalis , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Fosforilases/antagonistas & inibidores , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
12.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563096

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis is still a serious public health concern around the world. More treatment strategies or more specific molecular targets have been sought by researchers. One of the most important targets is M. tuberculosis' enoyl-acyl carrier protein reductase InhA which is considered a promising, well-studied target for anti-tuberculosis medication development. Our team has made it a goal to find new lead structures that could be useful in the creation of new antitubercular drugs. In this study, a new class of 1,2,3- and 1,2,4-triazole hybrid compounds was prepared. Click synthesis was used to afford 1,2,3-triazoles scaffold linked to 1,2,4-triazole by fixable mercaptomethylene linker. The new prepared compounds have been characterized by different spectroscopic tools. The designed compounds were tested in vitro against the InhA enzyme. At 10 nM, the inhibitors 5b, 5c, 7c, 7d, 7e, and 7f successfully and totally (100%) inhibited the InhA enzyme. The IC50 values were calculated using different concentrations. With IC50 values of 0.074 and 0.13 nM, 7c and 7e were the most promising InhA inhibitors. Furthermore, a molecular docking investigation was carried out to support antitubercular activity as well as to analyze the binding manner of the screened compounds with the target InhA enzyme's binding site.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Oxirredutases , Triazóis , Tuberculose , Proteína de Transporte de Acila/metabolismo , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacologia
13.
mBio ; 13(3): e0036722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420470

RESUMO

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to ß-lactam antibiotics by producing ß-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of ß-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D ß-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-ß-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. IMPORTANCE Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D ß-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Inibidores de beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
14.
Cell Mol Life Sci ; 79(3): 179, 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253091

RESUMO

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.


Assuntos
Desenho de Fármacos , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Eucariotos/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/classificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
15.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35245364

RESUMO

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Assuntos
Proteínas de Bactérias , Bactérias Gram-Negativas , Leishmania major , Peptidilprolil Isomerase , Proteínas de Protozoários , Proteínas de Bactérias/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Proteínas Recombinantes
16.
Sci Rep ; 12(1): 2840, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181703

RESUMO

Streptomyces coelicolor A3(2) is a model microorganism for the study of Streptomycetes, antibiotic production, and secondary metabolism in general. Even though S. coelicolor has an outstanding variety of regulators among bacteria, little effort to globally study its transcription has been made. We manually curated 29 years of literature and databases to assemble a meta-curated experimentally-validated gene regulatory network (GRN) with 5386 genes and 9707 regulatory interactions (~ 41% of the total expected interactions). This provides the most extensive and up-to-date reconstruction available for the regulatory circuitry of this organism. Only ~ 6% (534/9707) are supported by experiments confirming the binding of the transcription factor to the upstream region of the target gene, the so-called "strong" evidence. While for the remaining interactions there is no confirmation of direct binding. To tackle network incompleteness, we performed network inference using several methods (including two proposed here) for motif identification in DNA sequences and GRN inference from transcriptomics. Further, we contrasted the structural properties and functional architecture of the networks to assess the reliability of the predictions, finding the inference from DNA sequence data to be the most trustworthy approach. Finally, we show two applications of the inferred and the curated networks. The inference allowed us to propose novel transcription factors for the key Streptomyces antibiotic regulatory proteins (SARPs). The curated network allowed us to study the conservation of the system-level components between S. coelicolor and Corynebacterium glutamicum. There we identified the basal machinery as the common signature between the two organisms. The curated networks were deposited in Abasy Atlas ( https://abasy.ccg.unam.mx/ ) while the inferences are available as Supplementary Material.


Assuntos
Infecções Bacterianas/genética , Redes Reguladoras de Genes/genética , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Antibacterianos/biossíntese , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Sequência de Bases/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Metabolismo Secundário/genética , Streptomyces coelicolor/metabolismo
17.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208965

RESUMO

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Assuntos
Antibacterianos/química , Proteínas de Bactérias , Inibidores Enzimáticos/química , Glucosefosfato Desidrogenase , Simulação de Acoplamento Molecular , Trichomonas vaginalis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/química , Cinética
18.
Biomed Pharmacother ; 147: 112521, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149360

RESUMO

The rapid proliferation and colonization of probiotics in the intestines are essential for human health. Quorum sensing (QS) is a communication mechanism among bacteria, which can regulate various bacterial crowd behavior. This study aimed to enhance the viability of Lactobacillus reuteri 1-12 by regulating QS. Herein, we built a database containing 72 natural products (previously reported) that can improve intestinal flora. Virtual screening (VS) was subsequently conducted to screen four potential active compounds. After that, molecular docking was conducted to analyze the binding mode of the four natural products to S-Ribosylhomocysteinase (LuxS). The results showed that norathyriol, mangiferin, baicalein, and kaempferol had good binding ability to LuxS. The validation experiment showed that norathyriol, mangiferin, baicalein, and kaempferol could inhibit the production of autoinducer-2 (AI-2). Moreover, mangiferin significantly increased L. reuteri 1-12 biomass and promoted L. reuteri 1-12 biofilm formation and structure. Besides, only mangiferin inhibited luxS expression, thus increasing L. reuteri 1-12 biomass. This research indicated that mangiferin may be a potential inhibitor of LuxS, promoting the probiotic properties of L. reuteri and human health.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Liases de Carbono-Enxofre/antagonistas & inibidores , Limosilactobacillus reuteri , Probióticos/uso terapêutico , Xantonas/uso terapêutico , Produtos Biológicos , Humanos , Simulação de Acoplamento Molecular , Fitoterapia , Probióticos/química , Xantonas/química
19.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35164000

RESUMO

Gastric cancer is the fifth most frequent cancer and the third major cause of mortality worldwide. Helicobacter pylori, a bacterial infection linked with GC, injects the cytotoxin-associated antigen A (CagA; an oncoprotein) into host cells. When the phosphorylated CagA protein enters the cell, it attaches to other cellular components, interfering with normal cellular signaling pathways. CagA plays an important role in the progression of GC by interacting with phosphatidylserine of the host cell membrane. Therefore, disrupting the CagA-phosphatidylserine connection using small molecules appears to be a promising therapeutic approach. In this report, we screened the natural compounds from ZINC database against the CagA protein using the bioinformatics tools. Hits were initially chosen based on their physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics, as well as other drug-like characteristics. To locate safe and effective hits, the PAINS filter, binding affinities estimation, and interaction analysis were used. Three compounds with high binding affinity and specificity for the CagA binding pocket were discovered. The final hits, ZINC153731, ZINC69482055, and ZINC164387, were found to bind strongly with CagA protein, with binding energies of -11.53, -10.67, and -9.21 kcal/mol, respectively, which were higher than that of the control compound (-7.25 kcal/mol). Further, based on binding affinity and interaction pattern, two leads (ZINC153731, ZINC69482055) were chosen for molecular dynamics (MD) simulation analysis. MD results showed that they displayed stability in their vicinity at 100 ns. This study suggested that these compounds could be used as possible inhibitors of CagA protein in the fight against GC. However, additional benchwork tests are required to validate them as CagA protein inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Produtos Biológicos/farmacologia , Simulação por Computador , Infecções por Helicobacter/complicações , Helicobacter pylori/isolamento & purificação , Neoplasias Gástricas/tratamento farmacológico , Antígenos de Bactérias , Infecções por Helicobacter/microbiologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias Gástricas/microbiologia
20.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164122

RESUMO

The urease enzyme has been an important target for the discovery of effective pharmacological and agricultural products. Thirteen regio-selectively alkylated benzimidazole-2-thione derivatives have been designed to carry the essential features of urease inhibitors. The urease enzyme was isolated from Helicobacter pylori as a recombinant urease utilizing the His-tag method. The isolated enzyme was purified and characterized using chromatographic and FPLC techniques showing a maximal activity of 200 mg/mL. Additionally, the commercial Jack bean urease was purchased and included in this study for comparative and mechanistic investigations. The designed compounds were synthesized and screened for their inhibitory activity against the two ureases. Compound 2 inhibited H. pylori and Jack bean ureases with IC50 values of 0.11; and 0.26 mM; respectively. While compound 5 showed IC50 values of 0.01; and 0.29 mM; respectively. Compounds 2 and 5 were docked against Helicobacter pylori urease (PDB ID: 1E9Y; resolution: 3.00 Å) and exhibited correct binding modes with free energy (ΔG) values of -9.74 and -13.82 kcal mol-1; respectively. Further; the in silico ADMET and toxicity properties of 2 and 5 indicated their general safeties and likeness to be used as drugs. Finally, the compounds' safety was authenticated by an in vitro cytotoxicity assay against fibroblast cells.


Assuntos
Benzimidazóis/química , Inibidores Enzimáticos/química , Helicobacter pylori/enzimologia , Simulação de Acoplamento Molecular , Urease , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Helicobacter pylori/genética , Urease/antagonistas & inibidores , Urease/biossíntese , Urease/genética , Urease/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...